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A B S T R A C T

Cycling and walking are environmentally-friendly transport modes, providing alternatives to
automobility. However, exposure to hazards (e.g., crashes) may influence the choice to walk or
cycle for risk-averse populations, minimizing non-motorized travel as an alternative to driving.
Most models to estimate non-motorized traffic volumes (and subsequently hazard exposure) are
based on specific time periods (e.g., peak-hour) or long-term averages (e.g., Annual Average
Daily Traffic), which do not allow for estimating hazard exposure by time of day. We calculated
Annual Average Hourly Traffic estimates of bicycles and pedestrians from a comprehensive traffic
monitoring campaign in a small university town (Blacksburg, VA) to develop hourly direct-de-
mand models that account for both spatial (e.g., land use, transportation) and temporal (i.e., time
of day) factors. We developed two types of models: (1) hour-specific models (i.e., one model for
each hour of the day) and (2) a single spatiotemporal model that directly incorporates temporal
variables. Our model results were reasonable (adj-R2 for the hour-specific [spatiotemporal] bi-
cycle model: ∼0.47 [0.49]; pedestrian model: ∼0.69 [0.72]). We found correlation among non-
motorized traffic, land use (e.g., population density), and transportation (e.g., on-street facility)
variables. Temporal variables had a similar magnitude of correlation as the spatial variables. We
produced spatial estimates that vary by time of day to illustrate spatiotemporal traffic patterns
for the entire network. Our temporally-resolved models could be used to assess exposure to
hazards (e.g. air pollution, crashes) or locate safety-related infrastructure (e.g., striping, lights)
based on targeted time periods (e.g., peak-hour, nighttime) that temporally averaged estimates
cannot.

1. Introduction and literature review

Non-motorized (i.e., bicycle and pedestrian) transportation has experienced growing support from local government, public
health officials, as well as transportation and environmental organizations (Pucher & Buehler, 2010; Gärling & Ettema, 2014; Geller,
2003; Sallis et al., 2006). This support is due in part to walking and cycling’s role in environmentally-sustainable transportation,
providing alternatives to the car for many trips, particularly when integrated with public transit (Ogilvie et al., 2004; Scheepers et al.,
2014; Nieuwenhuijsen and Khreis, 2016; Buehler and Pucher, 2012). This trend has motivated planners to encourage risk-averse
populations to participate in non-motorized travel (TRB, 2005), which highlights the need for studies on traffic-related exposure
assessment (Bigazzi & Figliozzi, 2014; Vanparijs et al., 2015). In previous efforts, exposure assessment has typically characterized
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long-term average (e.g., annual) estimates of both the population (e.g., cyclists and pedestrians) and the exposure (e.g., accidents, air
toxics) (Raford & Ragland, 2005); however, exposure to hazards may vary by time of day (Hatzopoulou et al., 2013; Jerrett et al.,
2005).

Developing models that are capable of estimating temporally-resolved bicycle and pedestrian traffic volumes at locations without
traffic counts may improve exposure assessment. For example, intersection or block-level bicycle counts enable the comparison of
spatial patterns between bicycle traffic and ambient air pollution concentrations (Strauss et al., 2012; Hankey et al., 2017a). Simi-
larly, crash analyses could be reported as a function of hourly volumes instead of annual average volumes (Rothenberg et al., 2016;
Murphy et al., 2017) since risk factors for crashes may change during nighttime hours (Johnson et al., 2015). In general, aggregated
exposure measures (e.g., Annual Average Daily Traffic [AADT]) may fail to capture the exposure variability by time of day suggesting
a need for temporally resolved traffic volumes (e.g., hourly traffic) as an input for exposure assessment studies (Ivan et al., 2000; Qin
et al., 2006).

The US Federal Highway Administration (FWHA) has recently synthesized existing methods for estimating bicycle and pedestrian
exposure to risk (FWHA, 2017). Models of bicycle and pedestrian volumes include linear regression (Jones et al., 2010; Lindsey et al.,
2006; Schneider et al., 2009b), Poisson or negative binomial regression (Wang et al., 2014; Merom et al., 2003), generalized linear
mixed models (Chen et al., 2017) or geographically weighted regression (Yang et al., 2017) indicating that there is not consensus on a
single modeling approach. Typically, non-motorized traffic modeling efforts estimate either daily averages or peak hours (Fagnant &
Kockelman, 2016; Figliozzi et al., 2014; Murphy et al., 2017; Schmiedeskamp & Zhao, 2016; Tabeshian & Kattan, 2014; Jones et al.,
2010; Hankey & Lindsey, 2016; Hankey et al., 2017b; Yang et al., 2017). Direct-demand models are a potentially useful modeling
approach that employ a wide range of predictor variables including: transportation, land use, economic factors, and weather con-
ditions (Griswold et al., 2011; Molino et al., 2009; Radwan et al., 2016; Miranda-Moreno & Fernandes, 2011; Pulugurtha & Repaka,
2008; Schneider et al., 2009a, 2009b; Wang et al., 2016). However, the outputs (and resulting estimates of spatial patterns of non-
motorized traffic) from previous direct-demand models usually do not incorporate temporal variability directly in the modeling
approach. Developing models for singular time periods (e.g., peak hours) could potentially hinder efforts to conduct exposure as-
sessment on a more temporally-refined basis. For example, estimates of off-peak hours would be useful for non-motorized trans-
portation studies on crime risk or activity patterns at night (e.g., near entertainment districts). Other attempts to estimate hourly non-
motorized traffic using adjustment factors often suffer from an incomplete network of continuous count data to properly develop
factor groups (Gosse & Clarens, 2014; Hottenstein et al., 1997; Nordback & Sellinger, 2014; NCHRP, 2014).

In this paper, we use a dataset of automated non-motorized traffic counts to develop direct-demand models that are capable of
hourly estimation of bicycle and pedestrian traffic volumes in Blacksburg, VA. We use model results to observe how spatial patterns of
non-motorized traffic change by time of day and provide spatiotemporal, model-derived traffic estimates at all locations on the
network. For example, we compare the fully normalized regression coefficients of commonly recognized land-use and transportation
variables vs. temporal (i.e., time of day) variables on bicycle and pedestrian traffic volumes. The outputs of our models could be used
to better assess exposure to hazards (e.g. air pollution, crashes) or safety-related infrastructure (e.g., striping, lights) for targeted time
periods (e.g., peak-hour vs. nighttime) that temporally averaged estimates (e.g., daily averages) cannot.

2. Data and methods

We developed hourly direct-demand models of bicycle and pedestrian traffic based on count data from a non-motorized traffic
monitoring campaign in Blacksburg, VA. The traffic monitoring data included hourly traffic counts of bicycles and pedestrians at 101
and 72 locations, respectively, for each mode. As explained below in Section 2.3.1, we annualized the hourly counts (by using
reference sites to adjust short-duration counts) to obtain hourly traffic estimates for all 24 h of the day. Our modeling approach
enabled us to explore differences in temporal and spatial patterns on an entire transportation network. Our overarching goal is to
integrate temporal information into the direct-demand models and to provide time-specific traffic information for exposure and
safety analyses.

2.1. Study location

Our study area is the small, rural college town of Blacksburg, VA (∼42,000 total population including ∼30,000 students;
50.2 km2). Located in the New River Valley, the Town of Blacksburg is heavily influenced by Virginia Tech.

2.2. Site selection and data collection

We previously collected bicycle (pedestrian) counts at 101 (72) locations as part of a traffic monitoring campaign in 2015 (Fig. 1).
The traffic monitoring campaign captured spatial variability by stratifying count locations by street functional class (e.g., major road
vs. local road), centrality (a measure of bicycle trip potential called stress centrality as defined in McDaniel et al., 2014) and presence
of facilities (e.g., bike lanes, sidewalks). Counts were recorded using automated counters to ensure 7 days of valid data at each
location (we also deployed counters at four reference sites counting both bicycles and pedestrians continuously for the entire year).
We aggregated the automated counts on an hourly basis at each location and annualized the hourly estimates using the reference site
data. Further details (e.g., location type, estimation errors, and number of counts by location type) that describe the monitoring
campaign can be found in Lu et al., (2017); further detail on annualizing the counts is introduced below in Section 2.3.1.
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2.3. Direct-demand models

Our direct-demand models were based on a stepwise regression approach that allows for varying buffer sizes of independent
variables (e.g., land-use and transportation features). We developed two types of models to incorporate temporal variability during
model-building: (1) twenty-four hour-specific models (i.e., one model for each hour of the day) and (2) a single spatiotemporal model
that incorporates time of day as an additional predictor to the spatial variables (i.e., a single model for which we divided a day evenly
into 6 time periods [4 h each] and included the time of day variables as dummy variables).

Fig. 1. Bicycle and pedestrian count locations in Blacksburg, VA.
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Hour-specific models: To replicate previous efforts (i.e., developing models for a specific time period such as the peak hour) we
developed hour-specific models (i.e., one model per hour of day) that allowed for different independent variables (e.g., land use and
transportation) to be selected for each hour of day. An advantage of these models is that they allow for exploration of which land-use
features are most correlated with traffic during different times of day. A disadvantage is that 24 separate models must be developed to
capture the entire day.

Spatiotemporal model: To address the limitations of the hour-specific models we developed a single spatiotemporal model that
includes temporal factors (i.e., time of day) as dummy variables directly in the model building process. We constructed these
variables by dividing the day evenly into 6 time periods (4 h per period) to be candidate variables for selection in our models. An
advantage of this approach is that a single model is easier to implement and it is possible to compare the effects of spatial and
temporal factors. A disadvantage is that the approach may sacrifice temporal specificity (i.e., produces hourly estimates averaged
across a 4-h period rather than individual hourly estimates).

2.3.1. Dependent variable preparation
We previously estimated AADT for bicycles and pedestrians based on the monitoring data described above (Lu et al., 2017). We

estimated Annual Average Hourly Traffic (AAHT) for all count locations following a two-step process. First, we created an hourly
factor (an average percent of daily traffic value) for each hour and each location using the 7 days of location-specific count data.
Second, we multiplied the hourly factor by the location-specific AADT estimates (developed in Lu et al., 2017) to obtain annualized
hourly estimates. This process resulted in 24 AAHT estimates of bicycles (pedestrians) for all 101 (72) locations. We tested for
normality in the data and log-transformed all AAHT estimates when used as dependent variables for the direct-demand models.

2.3.2. Independent variable selection
We tabulated independent variables for use in the direct-demand models (Table 1). Based on previous literature (Griswold et al.,

2011; Molino et al., 2009; Radwan et al., 2016; Miranda-Moreno & Fernandes, 2011; Pulugurtha & Repaka, 2008; Schneider et al.,
2009a, 2009b; Wang et al., 2016; Hankey & Lindsey, 2016; Hankey et al., 2017b), we selected variables that capture land use (e.g.,
industrial areas, residential households) and transportation features (e.g., functional class, bus stops). Variables were tabulated using
varying buffer sizes for all 101 count locations (100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2500, 3000m) following Hankey
et al., 2017b. We generated 11 variables at 11 buffer sizes (with one scale-less centrality measure) for the hour-specific models.
Additionally, for the spatiotemporal model, we divided the day evenly into 6 time periods (4 h each) and chose the 20:00–23:59 time
period (i.e., the time period when mean traffic volumes were nearest to the overall mean among all 6 time periods) as our reference
category to code dummy variables. This resulted in a total of 127 (11× 11 [buffer variables] + 1 [scale-less variable] + 5 [time of
day dummy variables]) variables available for selection in the direct-demand models.

Table 1
Independent variables used in the direct-demand models.

Variable Variable Type Unit Bicycle Model Pedestrian Model

Hour-
specifica

Spatio-
temporalb

Hour-
specifica

Spatio-temporalb

Land use Population Density Area-weighted
average

People km−2 X X X X

Household Income Area-weighted
average

Dollars X X X X

Residential Addresses Count in buffer Count total X X X X
Non-residential
Addresses

Count in buffer Count total X X X X

Industrial Area Area in buffer Square meters X X X X

Transportation Major Roads Length in buffer Meters X X X X
Local Roads Length in buffer Meters X X X X
Intersections Count in buffer Count total X X X X
Bus Stops Count in buffer Count total X X X X
Sidewalks Length in buffer Meters X X
On-street Facility Length in buffer Meters X X
Centrality Point Count of O-D

pairs
X X X X

Time of day 0:00–4:00 Dummy variable Hour X X
4:00–8:00 Dummy variable Hour X X
8:00–12:00 Dummy variable Hour X X
12:00–16:00 Dummy variable Hour X X
16:00–20:00 Dummy variable Hour X X

a Hour-specific models are an approach to develop a single model for each hour in a day (n=24 models).
b Spatiotemporal models include time of day effects (4 h per interval) as dummy variables in a single model.
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2.3.3. Stepwise linear regression approach
We employed a stepwise linear regression approach that allows for predictor variables to be selected at varying buffer sizes with

the goal of developing parsimonious models. The result of this procedure is a model that’s best use is spatial prediction of traffic
volumes; a disadvantage of the approach is that it may sometimes result in counter-intuitive variables to be selected among models.
The approach is described in detail in previous studies of air quality and non-motorized traffic modeling (Hankey & Lindsey, 2016; Su
et al., 2009). Our goal was to select independent variables (e.g., land use and transportation) that best correlate with the dependent
variables (i.e., AAHT). Generally, the process included two steps: (1) adding the variable that was most correlated with bicycle/
pedestrian traffic to the model and (2) adding additional variables that were most correlated with the model residuals. This variable
selection process ended when either (1) a variable was not statistically correlated (p < 0.05) or (2) the multi-collinearity indicator,
Variance Inflation Factor (VIF), was greater than 5.

To better compare model coefficients among variables and modes, we fully normalized the model coefficients. We multiplied the
regression coefficients by a factor to generate dimensionless regression coefficients: difference between the 95th and 5th percentile
for the independent variable divided by the difference between the 95th and 5th percentile for the dependent variable. The nor-
malized coefficients denote the value of the 95th-5th interval increase of the dependent variable (i.e., AAHT) for each 95th-5th
interval increase of the independent variable. One of our goals is to explore how temporal factors impact bicycle and pedestrian
traffic as compared to spatial factors. This approach allows for relative comparison among spatial and temporal factors in the model
as well as between modes.

2.3.4. Sensitivity analysis
We performed two sensitivity analyses for the spatiotemporal models to explore how temporal variability impacts model per-

formance (i.e., adj-R2). Our sensitivity analyses included: (1) sensitivity by choice of time periods (i.e., 4-h vs. 6-h intervals [dividing
24 h into 4 time periods instead of 6 time periods]) and (2) sensitivity by choice of day of week (i.e., all days vs. weekdays only vs.
weekends only).

2.4. Model validation

We performed two types of model validation to assess model performance based on goodness-of-fit (i.e., adj-R2). First, we con-
ducted internal validation using scatterplots of observed vs. fitted values for the spatiotemporal models.

Second, we performed a Monte Carlo-based 20% holdout analysis for both the spatiotemporal models and the hour-specific
models. We compared the “test” data (the 20% randomly selected hold-out data) to the “build” data (the remaining 80% of the data)
by using R2 as a performance measure. This process was repeated 100 times and average R2 values were calculated as the validation
R2 for each model.

We also tested spatial autocorrelation of the model residuals for the spatiotemporal models during all hours of the day (i.e., 6
time-period intervals). Specifically, we first used Global Moran’s I to assess whether there was spatial autocorrelation present in the
model residuals. If this issue existed (Moran’s I was statistically significant [p < 0.05]), we further applied LISA (Local Indicators of
Spatial Association; Anselin, 1995) to check where autocorrelation arose during the specific time periods.

2.5. Temporal and spatial estimates of bicycle and pedestrian traffic

We applied the spatiotemporal models to estimate bicycle and pedestrian AAHT during each time period for all street and trail
segments in Blacksburg, VA (n= 1848; excluding freeways where bicycles and pedestrians are prohibited). Then, we mapped the
AAHT estimates for each time period and examined the spatial patterns of bicycle and pedestrian traffic across the entire trans-
portation network by time of day.

3. Results

We present results from our two sets of direct-demand models (i.e., hour-specific and spatiotemporal models) in Blacksburg, VA.
Then, we show model performance and sensitivity analyses associated with choice of time periods and day of week for the spatio-
temporal models. After reporting internal and external validation results, we map the bicycle and pedestrian AAHT estimates on the
entire transportation network.

3.1. Summary of AAHT at count sites

Using the approach described above, we obtained 2424 (101 locations× 24 h) individual estimates of bicycle AAHT and 1728 (72
locations× 24 h; there were fewer locations with pedestrian estimates due to lack of sidewalks) estimates of pedestrian AAHT
(Fig. 2). Since Blacksburg is a small town, the mean (median) AAHT was relatively small (especially during nighttime). Traffic
volumes were expectedly higher during the day (i.e., 6:00–21:00). Hourly pedestrian traffic was generally higher than bicycle traffic.
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3.2. Direct-demand models

3.2.1. Hour-specific models
The hour-specific models resulted in 24 individual models each for bicycles and pedestrians. The bicycle models generally se-

lected land use and transportation variables (e.g., population density and on-street facilities) during daytime hours (6:00–21:00);
similar variables (e.g., population density and sidewalks) were selected in the pedestrian models. During early morning and late night
hours, few (0–2) variables were selected in the models. This finding is likely due to the very low traffic volumes (and thus low spatial
variability) during those time periods and warrants caution when applying models for those hours of day. Overall, hour-specific
models had modest goodness-of-fit (mean adj-R2 for bicycle [pedestrian] models during daytime hours: 0.47 [0.69]).

Selected independent variables mostly followed a priori assumptions. For example, hourly bicycle traffic was positively correlated
with population density and network centrality. We also observed positive correlation for on-street facilities suggesting the beneficial
effects of bicycle infrastructure on cycling rates. The result that household income was negatively correlated with bicycle traffic was
possibly due to the spatial location of higher income neighborhoods (i.e., located outside of the Town center with elevated topo-
graphy that may inhibit cycling activities).

Similarly, pedestrian hourly traffic was positively correlated with population density and bus stops. Sidewalks showed positive
correlation indicating the utility of walkable infrastructure. Pedestrian traffic was also negatively correlated with household income
and residential addresses. Tables 2 and 3 show the model results for all hour-specific models of bicycles and pedestrians separately.

3.2.2. Spatiotemporal models
The spatiotemporal models included the same set of land-use and transportation variables as candidates for selection, but also

added 5 time of day dummy variables (in 4-h intervals) to account for temporal variability. The bicycle model resulted in 7 variables
(4 were temporal variables) selected while the pedestrian model selected 15 variables (5 were temporal variables). The overall
goodness-of-fit for the spatiotemporal models for the two modes were reasonable (adj-R2 for bicycle [pedestrian]: 0.49 [0.72]).

Hourly bicycle traffic was positively correlated with all categories of the independent variables, for example, the model selected
population density (land-use), on-street facilities and centrality (transportation network features), and two time of day variables
(12:00–16:00 and 16:00–20:00; temporal variability). Night (0:00–4:00) and early morning (4:00–8:00) were negatively correlated
with bicycle traffic, as expected. Overall, land-use and transportation factors were associated with cycling volumes and the temporal
effect (i.e., time of day) also played an important role.

Compared to the bicycle model, the pedestrian model selected more land-use and transportation variables as well as time of day
factors, most of which followed a priori assumptions in terms of sign of coefficients. For example, population density, sidewalks,

Fig. 2. Boxplots of bicycle and pedestrian AAHT estimates among all count locations. The dot in each figure represents the mean AAHT for that
hour.
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major roads, and local roads were positively correlated with pedestrian traffic; three time of day variables (8:00–12:00, 12:00–16:00,
and 16:00–20:00) were also selected. Pedestrian traffic was negatively correlated with household income, industrial area as well as
night (0:00–4:00) and early morning (4:00–8:00). Intersection density, however, showed a negative correlation, possibly due to
multicollinearity with retail area and fewer intersections on the university campus. Table 4 shows the model results of the spatio-
temporal models.

3.2.3. Comparison among models
Both the hour-specific and spatiotemporal models selected land-use and transportation variables with expected signs and resulted

in reasonable goodness-of-fit (mean adj-R2 for hour-specific [spatiotemporal] bicycle model: 0.47 [0.49]; pedestrian model: 0.69
[0.72]). This indicates the choice of independent variables accounted for a reasonable portion of the variability in hourly bicycle and
pedestrian traffic. The model results echo findings of other studies (Griswold et al., 2011; Molino et al., 2009; Radwan et al., 2016;
Miranda-Moreno & Fernandes, 2011; Pulugurtha & Repaka, 2008; Schneider et al., 2009a, 2009b; Wang et al., 2016; Hankey &
Lindsey, 2016; Hankey et al., 2017b). However, differences existed in variable selection between both transportation mode (i.e.,
bicycle vs. pedestrian models) and model type (i.e., spatiotemporal vs. hour-specific models). For example, the spatiotemporal bicycle
model selected fewer independent variables than the hour-specific bicycle models. This was likely due to the fact that the hour-
specific models consisted of 24 individual models for separate hours and thus variable selection was not always consistent among
models. The spatiotemporal pedestrian model selected nearly all of the candidate variables and temporal factors while each of the
hour-specific models generally selected fewer variables. Overall, the spatiotemporal models performed better than the hour-specific
models in (1) goodness-of-fit and (2) building more parsimonious models that directly incorporate temporal variability (i.e., only one
model per mode).

We compared the mean fully normalized coefficients among modes and model types for land-use and transportation features vs.
temporal factors on bicycle and pedestrian traffic. This exercise potentially offers insight into the influence of different types of
variables on hourly traffic patterns. Mean absolute fully normalized regression coefficients for the hour-specific (spatiotemporal)
bicycle models were 0.27 (0.30) for land use variables and 0.23 (0.22) for transportation variables, as compared to temporal vari-
ables: 0.19 (spatiotemporal model only). In general, the magnitude of effect of the temporal factors is similar to the land use and
transportation variables.

Mean absolute fully normalized regression coefficients for the hour-specific (spatiotemporal) pedestrian models were 0.18 (0.09)
for land use variables and 0.28 (0.23) for transportation variables, as compared to temporal variables: 0.16 (spatiotemporal model
only). Sidewalks had the highest mean absolute fully normalized coefficients (hour-specific [spatiotemporal]: 0.64 [0.53]) indicating
the positive effect of pedestrian infrastructure. Also, temporal factors had a similar magnitude of effect as land use and transportation
variables. Fig. 3 shows the fully normalized regression coefficients among the direct-demand models.

3.2.4. Sensitivity analysis
We performed a series of sensitivity analyses for the spatiotemporal models by varying two aspects of our modeling approach: (1)

aggregation method for time of day variables (i.e., grouping time of day in 6-h instead of 4-h periods) and (2) modeling different

Table 4
Direct-demand model results for the spatiotemporal models of bicycle and pedestrian traffic.

Normalized coefficient (buffer size [m])

Bicycle model Pedestrian model

Land use Population density 0.30 (1250) 0.12 (250)
Household income −0.14 (2000)
Residential addresses −0.15 (1000)
Non-residential addresses 0.04 (100)
Industrial area −0.02 (2000)

Transportation Major roads 0.17 (250)
Local roads 0.13 (100)
Intersections −0.14 (250)
Bus stops 0.14 (250)
Sidewalks 0.53 (750)
On-street facility 0.16 (250)
Centrality 0.28

Time of day 0:00–4:00 −0.27 −0.22
4:00–8:00 −0.17 −0.14
8:00–12:00 0.13
12:00–16:00 0.15 0.13
16:00–20:00 0.15 0.17

Intercept 0.27 1.24
N 2424 1728
Adj-R2 0.49 0.72
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days-of-week (i.e., all days vs. weekdays only vs. weekends only). For the time of day aggregation method, the 6-h spatiotemporal
models showed slightly higher adj-R2 (bicycle [pedestrian]: 0.55 [0.72]) than the 4-h spatiotemporal models ((bicycle [pedestrian]:
0.49 [0.72]). However, the improvement of the adj-R2 for the bicycle model was likely the result of selecting many more land use and
transportation variables (11 vs. 3) thus potentially jeopardizing the usefulness for practitioners. Additionally, the 6-h approach
results in loss of time resolution in the traffic estimates. The alternate aggregation method (i.e., dividing the day into fewer intervals
[6-h vs. 4-h]) didn’t result in a large change in model performance.

When varying the day of week for modeling, the models for all days (the base-case models presented in this paper) performed
better than the weekday or weekend models. The adj-R2 of the bicycle (pedestrian) models were: 0.49 (0.72) for all days, 0.47 (0.71)
for weekdays, and 0.27 (0.64) for weekends. The difference between weekday and weekend model performance could be attributable
to the fact that we had only 1 week of monitoring at each location and thus stratifying the sample in this way introduces uncertainty
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Fig. 3. Mean fully normalized regression coefficients of hour-specific and spatiotemporal models.

Table 5
Sensitivity analysis of bicycle and pedestrian spatiotemporal models.

Bicycle model Pedestrian model

Method of aggregation for time-of-day variables

4-h model 6-h model 4-h model 6-h model

Number of spatial variables selected 3 11 10 11
Adj-R2 0.49 0.55 0.72 0.72

Modeling different days-of-week

Adj-R2 for all days 0.49 0.72
Adj-R2 for weekdays 0.47 0.71
Adj-R2 for weekends 0.27 0.64
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(i.e., traffic estimates are based on fewer days of data) in the specification of the dependent variable in our models. Table 5 shows the
results of the sensitivity analysis of the spatiotemporal models.

3.3. Model validation

We explored model performance (i.e., goodness-of-fit) by conducting two validation exercises: internal validation (scatterplots of
observed vs. fitted traffic estimates) and external validation (a 20% Monte Carlo-based hold-out analysis). Our models had similar
goodness-of-fit as previous efforts (Fagnant & Kockelman, 2016; Hankey & Lindsey, 2016; Miranda-Moreno & Fernandes, 2011;
Pulugurtha & Repaka, 2008; Schneider et al., 2009a, 2009b; Wang et al., 2016). The spatiotemporal models had relatively consistent
validation R2 results from our hold-out analysis. However, the hour-specific models tended to be unstable when applying the hold-out
validation. This could be attributable to the sample size for each approach; the 4-h models had a larger sample size (n=1728–2424
for a single model) than the hour-specific models (n= 72–101 for 24 separate models). Additionally, a slight drop in model per-
formance between the “test” and “build” data set occurred for both models. This finding suggests that our results may be sensitive to
choice of traffic monitoring locations. Fig. 4 shows the results of the internal and external validation for both models.

We used Global Moran’s I to test for autocorrelation among the residuals of the bicycle and pedestrian spatiotemporal models.
Global Moran’s I was statistically significant (p < 0.05) for the bicycle (pedestrian) spatiotemporal models during the 8:00–12:00
(20:00–23:59) time period; bicycle (pedestrian) Moran’s I: 0.22 (0.10), which indicated that spatial autocorrelation existed during
these time periods. Therefore, we further applied LISA (Anselin, 1995) and found that spatial clustering of model residuals existed for
a small number of locations on the east side of the university campus indicating that our models do not fully capture the variability in

Fig. 4. Internal (top panels) and external (bottom panels) validation of bicycle and pedestrian traffic models.
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those locations. Details of the spatial autocorrelation process are shown in Appendix A, Table A.1 and Figs. A.1, A.2.

3.4. Temporal and spatial estimates of bicycle and pedestrian traffic at unmonitored locations

We mapped bicycle and pedestrian AAHT estimates for all street and trail segments (n=1848) in Blacksburg for all 6 time of day
intervals (Fig. 5). Bicycle and pedestrian traffic varied spatially with each mode. Bicycle volumes were highest on off-street trails and
corridors connected to the university campus and commercial areas. Pedestrian traffic clustered on the university campus and the
surrounding commercial corridors. These spatial patterns indicate that cyclists were more dispersed throughout the Town while
pedestrian volumes were more correlated with university and commercial areas.

When adding temporal information to the spatial models, both bicycle and pedestrian traffic showed similar temporal variations
among the different times of day (e.g., demand for both modes increased from early morning and peaked during the daytime, but
decreased during the nighttime). However, minor differences existed. For example, bicycle traffic peaked between 12:00–20:00 and
clustered on the university campus as well as off-street trails with access to the campus. Cyclists also appeared to use the connecting
trails during the night (i.e., 20:00–23:59). These findings suggest that hazard exposure (e.g., crash risk) may be a concern on these
trails at night where inadequate lighting exists along these trails. For pedestrians, volumes increased more rapidly on the university
campus than cyclists especially in the morning (i.e., 8:00–12:00). Furthermore, pedestrians also clustered on the campus and
commercial corridors at night (i.e., 20:00–23:59) indicating these areas may require more attention regarding safety-related infra-
structure (e.g., lights) during nighttime hours.

4. Discussion

We developed two types of direct-demand models that include temporal information based on data from a comprehensive traffic
monitoring program with bicycle (pedestrian) counts at 101 (72) locations in a small, rural college town. Our work aims to estimate
hourly bicycle and pedestrian traffic and provide opportunities for subsequent research into exposure to hazards (e.g., air pollution
and traffic crashes). Our study also explores the relative magnitude of correlation of both temporal (e.g., time of day) and spatial
(land use and transportation network) variables with bicycle and pedestrian traffic volumes.

A key contribution of our direct-demand models is to explore how temporal variability (i.e., time of day) impacts spatial patterns
of traffic. For example, we were able to build individual models of bicycle and pedestrian traffic for each hour (i.e., n= 24 h-specific

Fig. 5. Model-derived bicycle and pedestrian AAHT estimates for all street and trail segments in Blacksburg using the spatiotemporal models.
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models) and found that major land use (e.g., population density) and transportation (e.g., centrality, on-street facility, sidewalks)
variables were correlated with non-motorized traffic during many hours of the day. By assembling the time of day variables as
dummy variables, we developed spatiotemporal models and found that temporal factors were as important as traditional spatial
variables (e.g., land use and transportation factors) in predicting traffic volumes. These findings are consistent with previous studies
(Fagnant & Kockelman, 2016; Hankey & Lindsey, 2016; Miranda-Moreno & Fernandes, 2011; Pulugurtha & Repaka, 2008; Schneider
et al., 2009a, 2009b; Wang et al., 2016; McDaniel et al., 2014) and further underscore the importance of temporal factors in pre-
dicting bicycle and pedestrian traffic.

Most direct-demand models have been developed based on estimates of AADT or counts of peak hours (Schmiedeskamp & Zhao,
2016; Tabeshian & Kattan, 2014; Hankey & Lindsey, 2016; Hankey et al., 2017b). Adding temporal information allows for devel-
opment of spatial models for targeted hours of day (hour-specific models) or for integrating effects of both temporal and spatial
factors in a single model (spatiotemporal model). As the model results indicate, the spatiotemporal models performed better than the
hour-specific models in (1) goodness-of-fit (bicycle adj-R2: 0.49 vs. 0.47; pedestrian adj-R2: 0.72 vs. 0.69) and (2) adding temporal
information in a user-friendly way (a single model designed for 4-h periods of a day vs. 24 individual models for each hour of the
day). These temporal models make it possible to compare to previous models that used daily average (e.g., adj-R2 of daily bicycle
[pedestrian]: 0.52 [0.71]; Hankey et al., 2017b) or peak-hour counts (e.g., adj-R2 of peak-period bicycle [pedestrian]: 0.46 [0.50];
Hankey & Lindsey, 2016).

By combining the results of our direct-demand models with information on hazards (e.g., crashes or air toxics), researchers could
explore spatiotemporal patterns of exposure. For example, the non-motorized estimates of off-peak hours could be used to explore
crime risks or the economic and recreational activities of cyclists and pedestrians at night (e.g., activity near restaurants or en-
tertainment districts). Furthermore, our models could provide spatiotemporal estimates of bicycle and pedestrian traffic for buildout
of safety-related infrastructure (e.g., bike lanes, sidewalks, traffic signals, or street lights) or to inform planning decisions aimed at
health-promoting interventions (e.g., bike sharing systems).

Our work demonstrates that it is possible to develop spatiotemporal models of non-motorized traffic as an input to exposure
assessment analyses that would benefit from having both spatially and temporally resolved estimates of bicycle and pedestrian traffic.
However, future research could expand our work in several ways. For example, a limitation of our study is that our data was collected
in a small, college town where bicycle and pedestrian volumes are relatively small (especially during nighttime or early morning).
This suggests that further replication of our work in larger communities (where we expect more non-motorized traffic and larger
mode share during those hours) or in a small town without a university (where most cycling and walking activities may not come
from university users) is warranted. Further work could adapt our approach to include data from emerging technologies (e.g., GPS-
enabled fitness tracking apps) which provide rich information on the spatiotemporal patterns of active travel. Lastly, prior studies of
direct-demand modeling for bicycles and pedestrians use a wide variety of statistical models, e.g., linear regression (Jones et al.,
2010; Lindsey et al., 2006; Schneider et al., 2009b), Poisson or negative binomial regression (Wang et al., 2014; Merom et al., 2003),
generalized linear mixed models (Chen et al., 2017) or geographically weighted regression (Yang et al., 2017). We used stepwise
linear regression to compare our results to relevant previous studies (Jones et al., 2010; Lindsey et al., 2006; Schneider et al., 2009b);
however, a useful research topic would be to systematically evaluate multiple modeling approaches on the same dataset to evaluate
the impacts of these modeling choices.

5. Conclusions

We developed two types of temporally-resolved direct-demand models of bicycle and pedestrian traffic (i.e., hour-specific models
and spatiotemporal models) based on a comprehensive non-motorized traffic monitoring campaign in Blacksburg, VA. We confirmed
that traditional land use (e.g., population density) and transportation (e.g., on-street facility, sidewalks) variables were correlated
with bicycle or pedestrian traffic at varying spatial scales. We also found that temporal (i.e., time of day) variables had a similar
magnitude of correlation as the spatial (i.e., land use and transportation) variables. Specifically, the mean fully normalized regression
coefficients were 0.19 (temporal) vs. 0.26 (spatial) for the bicycle models and 0.16 (temporal) vs. 0.16 (spatial) for the pedestrian
models. Our models had reasonable goodness-of-fit (adj-R2 for hour-specific [spatiotemporal] bicycle model: ∼0.47 [0.49]; pedes-
trian model: ∼0.69 [0.72]). The spatiotemporal models may provide a more user-friendly option for generating spatiotemporal
estimates of bicycle and pedestrian traffic as compared to the hour-specific models (i.e., a single model vs. 24 h-specific models). We
produced spatial estimates for all street and trail segments (n=1848) in Blacksburg and found that spatial patterns of cyclists and
pedestrians varied by mode and time of day. Results from our approach could be used to assess time-resolved patterns of exposure to
air toxics or traffic accidents and to prioritize safety-related or health-promoting infrastructure (current analyses focus on time-
averaged estimates). Our work serves as a proof-of-concept that direct-demand modeling can be modified to include temporal in-
formation to accurately estimate hourly non-motorized traffic volumes for targeted time periods on an entire transportation network.
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Appendix A. Spatial Autocorrelation of the Spatiotemporal Models

Fig. A1. LISA of bicycle spatiotemporal models during 8:00–12:00.
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Fig. A2. LISA of bicycle spatiotemporal models during 20:00–23:59.
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.trd.2018.05.
011.

References

Anselin, L., 1995. Local indicators of spatial association—LISA. Geogr. Anal. 27 (2), 93–115. http://dx.doi.org/10.1111/j.1538-4632.1995.tb00338.x.
Bigazzi, A.Y., Figliozzi, M.A., 2014. Review of urban bicyclists’ intake and uptake of traffic-related air pollution. Transp. Rev. 34 (2), 221–245. http://dx.doi.org/10.

1080/01441647.2014.897772.
Buehler, R., Pucher, J., 2012. Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes. Transportation 39 (2), 409–432. http://dx.

doi.org/10.1007/s11116-011-9355-8.
Chen, P., Zhou, J., Sun, F., 2017. Built environment determinants of bicycle volume: a longitudinal analysis. J. Transport Land Use 10 (1), 655–674. http://dx.doi.org/

10.5198/jtlu.2017.892.
Fagnant, D.J., Kockelman, K., 2016. A direct-demand model for bicycle counts: the impacts of level of service and other factors. Environ. Plan. B: Plan. Des. 43 (1),

93–107. http://dx.doi.org/10.1177/0265813515602568.
Figliozzi, M., Johnson, P., Monsere, C., Nordback, K., Asce, M., 2014. Methodology to characterize ideal short-term counting conditions and improve AADT estimation

accuracy using a regression-based correcting function. J. Transp. Eng. 140 (5), 1–8. http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000663.
Federal Highway Agency (FWHA, 2017. Synthesis of methods for estimating pedestrian and bicyclist exposure to risk at areawide levels and on specific transportation

facilities (Publication No. FHWA-SA-17-041). Retrieved from https://safety.fhwa.dot.gov/ped_bike/tools_solve/fhwasa17041/fhwasa17014.pdf.
Gärling, T., Ettema, D., 2014. Handbook of Sustainable Travel. Springer.
Geller, A.L., 2003. Smart growth: A prescription for livable cities. Am. J. Public Health 93 (9), 1410–1415. http://dx.doi.org/10.2105/AJPH.93.9.1410.
Gosse, C.A., Clarens, A., 2014. Estimating spatially and temporally continuous bicycle volumes by using sparse data. Transport. Res. Record: J. Transport. Res. Board

2443, 115–122. http://dx.doi.org/10.3141/2443-13.
Griswold, J.B., Medury, A., Schneider, R.J., 2011. Pilot models for estimating bicycle intersection volumes. Transport. Res. Record: J. Transport. Res. Board 2247, 1–7.

http://dx.doi.org/10.3141/2247-01.
Hankey, S., Lindsey, G., 2016. Facility-demand models of peak-period pedestrian and bicycle traffic: a comparison of fully-specified and reduced-form models.

Transport. Res. Record: J. Transport. Res. Board 2586, 48–58. http://dx.doi.org/10.3141/2586-06.
Hankey, S., Lindsey, G., Marshall, J.D., 2017a. Population-level exposure to particulate air pollution during active travel: planning for low-exposure, health-promoting

cities. Environ. Health Perspect. 125 (4), 527–534. http://dx.doi.org/10.1289/ehp442.
Hankey, S., Lu, T., Mondschein, A., Buehler, R., 2017b. Spatial models of active travel in small communities: merging the goals of traffic monitoring and direct-demand

modeling. J. Transp. Health 7 (January), 149–159. http://dx.doi.org/10.1016/j.jth.2017.08.009.
Hatzopoulou, M., Weichenthal, S., Dugum, H., Pickett, G., Miranda-moreno, L., Kulka, R., 2013. The impact of traffic volume, composition, and road geometry on

personal air pollution exposures among cyclists in Montreal, Canada. J. Expo. Sci. Environ. Epidemiol. 23, 46–51. http://dx.doi.org/10.1038/jes.2012.85.
Hottenstein, A., Turner, S., Shunk, G., 1997. Bicycle and pedestrian travel demand forecasting: summary of data collection activities. Texas Transportation Institute,

Department of Transportation, Texas.
Ivan, J.N., Wang, C., Bernardo, N.R., 2000. Explaining two-lane highway crash rates using land use and hourly exposure. Accid. Anal. Prev. 32, 787–795. http://dx.doi.

org/10.1016/s0001-4575(99)00132-3.
Jerrett, M., Arain, A., Kanaroglou, P., Beckerman, B., 2005. A review and evaluation of intraurban air pollution exposure models. J. Expo. Anal. Environ. Epidemiol.

15, 185–204. http://dx.doi.org/10.1038/sj.jea.7500388.
Johnson, M., Bugeja, L., Mulvilhill, C., 2015. Factors involved in cyclist fatality crashes: a systematic literature review. In: Proceedings of the 2015 Australasian Road

Safety Conference. Canberra, Australia.
Jones, M. G., Ryan, S., Donlon, J., Ledbetter, L., Ragland, D. R., Arnold, L., 2010. Seamless travel: measuring bicycle and pedestrian activity in San Diego County and

its relationship to land use, transportation, safety, and facility type. UC Berkeley Safe Transportation Research & Education Center.
Lindsey, G., Han, Y., Wilson, J., Yang, J., 2006. Neighborhood correlates of urban trail use. J. Phys. Activity Health 3 (Suppl 1), 139–157. http://dx.doi.org/10.1123/

jpah.3.s1.s139.
Lu, T., Buehler, R., Mondschein, A., Hankey, S., 2017. Designing a bicycle and pedestrian traffic monitoring program to estimate annual average daily traffic in a small

rural college town. Transp. Res. Part D 53, 193–204. http://dx.doi.org/10.1016/j.trd.2017.04.017.
McDaniel, S., Lowry, M., Dixon, M., 2014. Using origin-destination centrality to estimate directional bicycle volumes. Transport. Res. Record: J. Transport. Res. Board

2430, 12–19. http://dx.doi.org/10.3141/2430-02.
Merom, D., Bauman, A., Vita, P., Close, G., 2003. An environmental intervention to promote walking and cycling – the impact of a newly constructed Rail Trail in

Western Sydney. Prev. Med. 36 (2), 235–242. http://dx.doi.org/10.1016/S0091-7435(02)00025-7.
Miranda-Moreno, L.F., Fernandes, D., 2011. Modeling of pedestrian activity at signalized intersections. Transport. Res. Record: J. Transport. Res. Board 2264, 74–82.

Table A.1
Summary of Moran’s I of the spatiotemporal models for bicycles and pedestrians.

Mode Time of day Moran's I p-value

Bicycle 0:00–4:00 0.10 0.18
4:00–8:00 0.04 0.56
8:00–12:00 0.22 0.01*

12:00–16:00 0.10 0.16
16:00–20:00 0.01 0.85
20:00–23:59 0.11 0.15

Pedestrian 0:00–4:00 0.05 0.26
4:00–8:00 −0.06 0.64
8:00–12:00 −0.14 0.05
12:00–16:00 0.12 0.08
16:00–20:00 −0.02 0.92
20:00–23:59 0.10 0.01*

* Denotes the residual was statistically significant (p < 0.05). The distance band is set at 500m.

T. Lu et al. Transportation Research Part D 63 (2018) 244–260

259

http://dx.doi.org/10.1016/j.trd.2018.05.011
http://dx.doi.org/10.1016/j.trd.2018.05.011
http://dx.doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://dx.doi.org/10.1080/01441647.2014.897772
http://dx.doi.org/10.1080/01441647.2014.897772
http://dx.doi.org/10.1007/s11116-011-9355-8
http://dx.doi.org/10.1007/s11116-011-9355-8
http://dx.doi.org/10.5198/jtlu.2017.892
http://dx.doi.org/10.5198/jtlu.2017.892
http://dx.doi.org/10.1177/0265813515602568
http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000663
https://safety.fhwa.dot.gov/ped_bike/tools_solve/fhwasa17041/fhwasa17014.pdf
http://refhub.elsevier.com/S1361-9209(17)30956-2/h0040
http://dx.doi.org/10.2105/AJPH.93.9.1410
http://dx.doi.org/10.3141/2443-13
http://dx.doi.org/10.3141/2247-01
http://dx.doi.org/10.3141/2586-06
http://dx.doi.org/10.1289/ehp442
http://dx.doi.org/10.1016/j.jth.2017.08.009
http://dx.doi.org/10.1038/jes.2012.85
http://dx.doi.org/10.1016/s0001-4575(99)00132-3
http://dx.doi.org/10.1016/s0001-4575(99)00132-3
http://dx.doi.org/10.1038/sj.jea.7500388
http://dx.doi.org/10.1123/jpah.3.s1.s139
http://dx.doi.org/10.1123/jpah.3.s1.s139
http://dx.doi.org/10.1016/j.trd.2017.04.017
http://dx.doi.org/10.3141/2430-02
http://dx.doi.org/10.1016/S0091-7435(02)00025-7


http://dx.doi.org/10.3141/2264-09.
Molino, J.A., Kennedy, J.F., Johnson, P.L., Beuse, P.A., Emo, A.K., Do, A., 2009. Pedestrian and bicyclist exposure to risk methodology for estimation in an urban

environment. Transport. Res. Record: J. Transport. Res. Board 2140, 145–156. http://dx.doi.org/10.3141/2140-16.
Murphy, B., Levinson, D.M., Owen, A., 2017. Evaluating the safety in numbers effect for pedestrians at urban intersections. Accid. Anal. Prev. 106, 181–190. http://dx.

doi.org/10.1016/j.aap.2017.06.004.
National Cooperative Highway Research (NCHRP), 2014. Estimating bicycling and walking for planning and project development: A guidebook. NCHRP Report 770,

Transportation Research Board.
Nieuwenhuijsen, M.J., Khreis, H., 2016. Car free cities: pathway to healthy urban living. Environ. Int. 94, 251–262. http://dx.doi.org/10.1016/j.envint.2016.05.032.
Nordback, K., Sellinger, M., 2014. Methods for estimating bicycling and walking in Washington state. Publication WA-RD 828.1. Oregon Transportation Research and

Education Consortium, Portland.
Ogilvie, D., Egan, M., Hamilton, V., Petticrew, M., 2004. Promoting walking and cycling as an alternative to using cars: systematic review. BMJ 55 (September), 1–5.

http://dx.doi.org/10.1136/bmj.38216.714560.55.
Pucher, J., Buehler, R., 2010. Walking and cycling for healthy cities. Built Environ. 36 (4), 391–414. http://dx.doi.org/10.2148/benv.36.4.391.
Pulugurtha, S., Repaka, S., 2008. Assessment of models to measure pedestrian activity at signalized intersections. Transport. Res. Record: J. Transport. Res. Board

2073, 39–48. http://dx.doi.org/10.3141/2073-05.
Qin, X., Ivan, J.N., Ravishanker, N., Liu, J., Tepas, D., 2006. Bayesian estimation of hourly exposure functions by crash type and time of day. Accid. Anal. Prev. 38,

1071–1080. http://dx.doi.org/10.1016/j.aap.2006.04.012.
Radwan, E., Abou-Senna, H., Mohamed, A., Navarro, A., Minaei, N., Wu, J., Gonzalez, L., 2016. Assessment of sidewalk/bicycle-lane gaps with safety and developing

statewide pedestrian crash rates. Retrieved from<http://www.fdot.gov/research/Completed_Proj/Summary_TE/FDOT-BDV24-977-07-rpt.pdf > .
Raford, N., Ragland, D.R., 2005. Pedestrian volume modeling for traffic safety and exposure analysis: the case of Boston, Massachusetts. Safe Transportation Research

& Education Center.
Rothenberg, H., Goodman, D., Sundstrom, C., 2016. Separated bike lane crash analysis. In: Proceedings of the 95th Annual Meeting of the Transportation Research

Board. Washington, DC: Transportation Research Board.
Sallis, J.F., Cervero, R.B., Ascher, W., Henderson, K.A., Kraft, M.K., Kerr, J., 2006. An ecological approach to creating active living communities. Annu. Rev. Public

Health 27 (1), 297–322.
Scheepers, C.E., Wendel-vos, G.C.W., Den Broeder, J.M., Van Kempen, E.E.M.M., 2014. Shifting from car to active transport: a systematic review of the effectiveness of

interventions. Transp. Res. Part A 70, 264–280. http://dx.doi.org/10.1016/j.tra.2014.10.015.
Schmiedeskamp, P., Zhao, W., 2016. Estimating daily bicycle counts in Seattle, Washington, from seasonal and weather factors. Transport. Res. Record: J. Transport.

Res. Board 2593, 94–102. http://dx.doi.org/10.3141/2593-12.
Schneider, R., Arnold, L., Ragland, D., 2009a. Methodology for counting pedestrians at intersections. Transport. Res. Record: J. Transport. Res. Board 2140 (1), 1–12.

http://dx.doi.org/10.3141/2140-01.
Schneider, R., Arnold, L., Ragland, D., 2009b. Pilot model for estimating pedestrian intersection crossing volumes. Transport. Res. Record: J. Transport. Res. Board

2140, 13–26. http://dx.doi.org/10.3141/2140-02.
Strauss, J., Miranda-Moreno, L., Crouse, D., Goldberg, M.S., Ross, N.A., Hatzopoulou, M., 2012. Investigating the link between cyclist volumes and air pollution along

bicycle facilities in a dense urban core. Transport. Res. Part D: Transp. Environ. 17 (8), 619–625. http://dx.doi.org/10.1016/j.trd.2012.07.007.
Su, J.G., Jerrett, M., Beckerman, B., 2009. A distance-decay variable selection strategy for land use regression modeling of ambient air pollution exposures. Sci. Total

Environ. 407 (12), 3890–3898. http://dx.doi.org/10.1016/j.scitotenv.2009.01.061.
Tabeshian, M., Kattan, L., 2014. Modeling nonmotorized travel demand at intersections in Calgary, Canada: use of traffic counts and geographic information system

data. Transport. Res. Record: J. Transport. Res. Board 2430, 38–46. http://dx.doi.org/10.3141/2430-05.
Transportation Research Board, 2005. Does the built environment influence physical activity? Examining the evidence. TRB Special Report 282. Transportation

Research Board.
Vanparijs, J., Panis, L.I., Meeusen, R., Geus, B. De., 2015. Exposure measurement in bicycle safety analysis: a review of the literature. Accid. Anal. Prev. 84, 9–19.

http://dx.doi.org/10.1016/j.aap.2015.08.007.
Wang, J., Hankey, S., Wu, X., Lindsey, G., 2016. Monitoring and modeling of urban trail traffic: validation of direct demand models in Minneapolis, Minnesota, and

Columbus, Ohio. Transport. Res. Record: J. Transport. Res. Board 2593, 47–59. http://dx.doi.org/10.3141/2593-06.
Wang, X., Lindsey, G., Hankey, S., Hoff, K., 2014. Estimating mixed-mode urban trail traffic using negative binomial regression models. J. Urban Plann. Dev. 140 (1),

1–9. http://dx.doi.org/10.1061/(ASCE)UP.
Yang, H., Lu, X., Cherry, C., Liu, X., Li, Y., 2017. Spatial variations in active mode trip volume at intersections: a local analysis utilizing geographically weighted

regression. J. Transp. Geogr. 64 (September), 184–194. http://dx.doi.org/10.1016/j.jtrangeo.2017.09.007.

T. Lu et al. Transportation Research Part D 63 (2018) 244–260

260

http://dx.doi.org/10.3141/2264-09
http://dx.doi.org/10.3141/2140-16
http://dx.doi.org/10.1016/j.aap.2017.06.004
http://dx.doi.org/10.1016/j.aap.2017.06.004
http://dx.doi.org/10.1016/j.envint.2016.05.032
http://dx.doi.org/10.1136/bmj.38216.714560.55
http://dx.doi.org/10.2148/benv.36.4.391
http://dx.doi.org/10.3141/2073-05
http://dx.doi.org/10.1016/j.aap.2006.04.012
http://www.fdot.gov/research/Completed_Proj/Summary_TE/FDOT-BDV24-977-07-rpt.pdf
http://refhub.elsevier.com/S1361-9209(17)30956-2/h9015
http://refhub.elsevier.com/S1361-9209(17)30956-2/h9015
http://dx.doi.org/10.1016/j.tra.2014.10.015
http://dx.doi.org/10.3141/2593-12
http://dx.doi.org/10.3141/2140-01
http://dx.doi.org/10.3141/2140-02
http://dx.doi.org/10.1016/j.trd.2012.07.007
http://dx.doi.org/10.1016/j.scitotenv.2009.01.061
http://dx.doi.org/10.3141/2430-05
http://dx.doi.org/10.1016/j.aap.2015.08.007
http://dx.doi.org/10.3141/2593-06
http://dx.doi.org/10.1061/(ASCE)UP
http://dx.doi.org/10.1016/j.jtrangeo.2017.09.007

	Adding temporal information to direct-demand models: Hourly estimation of bicycle and pedestrian traffic in Blacksburg, VA
	Introduction and literature review
	Data and methods
	Study location
	Site selection and data collection
	Direct-demand models
	Dependent variable preparation
	Independent variable selection
	Stepwise linear regression approach
	Sensitivity analysis

	Model validation
	Temporal and spatial estimates of bicycle and pedestrian traffic

	Results
	Summary of AAHT at count sites
	Direct-demand models
	Hour-specific models
	Spatiotemporal models
	Comparison among models
	Sensitivity analysis

	Model validation
	Temporal and spatial estimates of bicycle and pedestrian traffic at unmonitored locations

	Discussion
	Conclusions
	Acknowledgements
	Spatial Autocorrelation of the Spatiotemporal Models
	Supplementary material
	References




