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Cycling and walking are commonly recognized as energy-efficient alternatives to motor-
ized transport. Research and practice lack a comprehensive set of methods to assess spa-
tiotemporal patterns of traffic volumes across an entire transportation network. Current
non-motorized traffic monitoring programs are primarily implemented in urban areas
and for singular components of the network (e.g., off-street trails, specific corridors). Our
approach synthesizes ongoing efforts in non-motorized traffic monitoring to estimate
Annual Average Daily Traffic (AADT), across an entire network in Blacksburg, VA – a small,
rural college town. We selected count sites across the network, stratified by street func-
tional class (e.g., major roads, local roads), centrality of the link relative to origins and des-
tinations, and planned bicycle facilities. We collected 45,456 h of pedestrian and cyclist
counts using three types of automated counters: pneumatic tube (n = 12), passive infrared
(n = 10), and radio beam (n = 3) at both reference locations (n = 4; 1-year) and short-
duration locations (n = 97; 1-week) during 2015. We found a strong correlation between
manual validation counts and automated counts. We used day-of-year scaling factors to
estimate AADT for bicycles and pedestrians and found that temporal and spatial patterns
differed between modes. Pedestrian volumes were higher and more variable than bicycle
volumes (median [interquartile range] AADT for pedestrians: 135 [89–292]; bicycles: 23
[11–43]); both modes were positively correlated with street functional class, presence of
facilities, and proximity to campus. Our approach provides insight for planners or policy-
makers interested in comprehensive monitoring programs to track performance measures
or for use in environmental and health impact studies.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Non-motorized transportation (i.e., biking and walking) is an energy-efficient alternative to motorized travel and a
commonly cited partial solution to the environmental impacts of transportation (PBIC, 2016; Pucher and Buehler, 2010).
However, transportation planners and engineers require information on the spatial and temporal patterns of
non-motorized traffic to inform decisions aimed at promoting cycling and walking. Implementing robust non-motorized
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traffic monitoring programs could aid engineers and planners in multiple domains, for example, tracking performance mea-
sures, prioritizing investment in infrastructure, health and environmental impact assessments, and safety analyses (Ryus
et al., 2014). Recognition of these benefits has resulted in targeted funding and pilot demonstration projects at the federal,
state, and local levels to assess best practices for bicycle and pedestrian data collection (PBIC, 2016).

Deploying a comprehensive traffic monitoring program often involves large input requirements (e.g., purchase and val-
idation of automated counters, labor to process count data). As a result, most non-motorized monitoring programs and
research efforts focus on a single component of the transportation network (e.g., off-street trails or specific transportation
corridors; Hankey et al., 2014; Nordback et al., 2013a, 2013b; Nosal et al., 2014). Key questions remain on how to implement
comprehensive programs to collect bicycle and pedestrian data effectively and efficiently for an entire transportation net-
work. Guidance from the National Bicycle & Pedestrian Documentation Project and the Federal Highway Administration’s
Traffic Monitoring Guide have offered standardized methods to collect counts (APD and ITE 2016; FHWA, 2013). Addition-
ally, a national count archive currently under development aims to help aggregate non-motorized count data collection
among different locations (Nordback et al., 2015b). Ongoing efforts are providing further guidance on counter performance
(Ryus et al., 2014; Brosnan et al., 2015; Nordback et al., 2015a; Schneider et al., 2013), developing scaling factors (Hankey
et al., 2014; Nosal et al., 2014; El Esawey et al., 2013), identifying factor groups (Hankey et al., 2014; Miranda-Moreno
et al., 2013; Nordback et al., 2013a, 2013b), and count site selection (FHWA, 2013; Ryan, 2013; Ryan et al., 2014).

Motorized traffic monitoring programs are well-established and performed regularly in both small and large jurisdictions
across the US. Performance measures such as Annual Average Daily Traffic (AADT) are derived from these counts and used to
conduct safety studies, report facility use, and secure transportation funding. However, performance measures are usually
not collected for cyclists and pedestrians; efforts to develop standardized methods for estimating performance measures
for non-motorized traffic are ongoing (Hankey et al., 2014; Nordback et al., 2013a, 2013b; Nosal et al., 2014). Most non-
motorized count programs are conducted in large urban areas (e.g., Minneapolis, Portland, San Francisco, and Vancouver;
Ryus et al., 2014; FHWA, 2013). Relatively few studies have focused on designing count campaigns in small, rural areas.
Small communities offer a unique opportunity to explore the design of comprehensive monitoring programs as the network
is small compared to larger urban areas, making it possible to collect a representative sample of counts across the network
and pilot a comprehensive method before scaling up to larger jurisdictions.

In this study, we introduce a systematic non-motorized traffic monitoring campaign in a small college town in a rural
setting (Blacksburg, VA; �50,000 people, 19.7 square miles) with the goal of characterizing bicycle and pedestrian traffic
on an entire transportation network, rather than focusing on singular components of the network (e.g., off-street trails, speci-
fic corridors). Our goal is to synthesize findings from the literature on aspects related to designing a count program (e.g.,
counter performance, development of scaling factors, and length of short-duration count) into a single traffic monitoring
effort. Our work includes deploying automated counters at 101 locations (including both reference and short-duration count
locations) selected to be representative of the transportation network in Blacksburg. We estimate bicycle and pedestrian
AADT at all count sites to generate performance measures analogous to those used in motorized transport. Our approach
may be helpful to communities that are interested in comprehensive monitoring of cyclists and pedestrians. We expect that
this approach could be scaled (up) for use in larger, more complex urban areas.
2. Data collection and methods

Our approach to implement a non-motorized traffic monitoring campaign includes four steps: (1) selection and validation
of automated counters, (2) count site selection, (3) estimation of performance measures (i.e., AADT) at the count sites, and (4)
mapping and summarization of AADT across the network (Fig. 1). First, we describe our approach to complete each step.
Then, we summarize results from the count campaign and discuss implications for implementing traffic monitoring
programs for bicycle and pedestrian traffic.
Fig. 1. Summary of approach to develop a pedestrian and bicycle traffic monitoring campaign in Blacksburg, VA.
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2.1. Automated counters and validation counts

We used a combination of automated counters to monitor bicycle and pedestrian traffic patterns on various road types
and off-street trails. We chose three automated count devices to collect separate counts of bicycles and pedestrians: (1)
pneumatic tube counters (MetroCount MC 5600 Vehicle Classifier System), (2) passive infrared counters (Eco-Counter Pyro),
and (3) radio beam counters (Chambers RadioBeam Bicycle-People Counter). See Appendix A (Fig. A.1) for a further descrip-
tion of the count devices. We chose automated counters based on previously reported performance (Ryus et al., 2014;
Brosnan et al., 2015; Nordback et al., 2015a; Schneider et al., 2013), characteristics of our count locations, portability, and
cost. We used pneumatic tubes to count bicycles on roads with mixed traffic, passive infrared counters to count pedestrians
on sidewalks, and radio beam counters to separately count bicycles and pedestrians on off-street trails.

Each of the automated counters are known to systematically over- or under-count due to factors such as occlusion (i.e.,
people walking or biking side-by-side) or double-counting (e.g., the radio beam sometimes counts cyclists twice due to the
sensitivity of the sensor). Researchers have commonly used manual field-based validation counts to correct hourly counts
obtained from automated counters (Schneider et al., 2013; Hyde-Wright et al., 2014). We collected 210 total hours of vali-
dation counts at 8 locations to develop correction equations for each type of counter. We collected the validation counts at
various times of day and days of the week to cover a wide range of traffic volumes. We assessed both linear and polynomial
fits for each correction equation and applied the corrections to all hourly automated counts for statistical analysis.

2.2. Count site selection and data collection

Based on the number of available counters (n = 25) and our research design (1-week of short-duration counts at each
location over �6 months) we were able to sample �100 sites across the network. We selected two types of count sites:
(1) 4 continuous reference sites and (2) 97 short-duration count sites. The reference sites provide continuous monitoring
of bicycle and pedestrian traffic across the duration of the count campaign. We had 12 pneumatic tube, 10 passive infrared,
and 3 radio beam counters available for use in this study. Three pneumatic tube, 4 passive infrared, and 1 radio beam coun-
ters were installed at the continuous reference sites (counter configuration was site-specific due to the different character-
istics of each count site; see Appendix A, Table A.1); the remaining counters (9 pneumatic tube, 6 passive infrared and 2 radio
beam) were rotated randomly on a weekly basis from April to October at the short-duration sites. Due to a delay in counter
delivery, not all of the reference site counters were deployed by January 1st of 2015 at the reference sites. However, all ref-
erence sites were deployed multiple weeks prior to any counts being collected at the short-duration sites. All sites were visu-
ally inspected prior to deploying counters and for most sites 1 day was needed before and after each count for relocation. We
addressed missing counts due to various incidents (e.g., vandalism, counter malfunction) by either fixing or replacing the
counter to ensure monitoring for at least 7 days at each count site.

Prior to our study, little information was available on patterns of bicycle and pedestrian traffic in Blacksburg. Therefore,
we chose reference sites based on (1) street functional class (e.g., major roads vs. local roads) and presence of a bicycle facil-
ity, (2) surrounding land uses (i.e., proximity to the University, downtown, and residential areas), and (3) professional judg-
ment (perceived use of the locations). In the absence of previous pedestrian and cyclist traffic counts (as is the case for many
jurisdictions) we based our decisions on the above existing criteria. We ultimately chose 4 sites: (1) a neighborhood local
road (off campus) with a bike lane, (2) a neighborhood local road (off campus) without a bike lane, (3) a retail corridor near
campus and downtown (with perceived high pedestrian volume), and (4) an off-street trail (the longest trail in Blacksburg).
Once the first iteration of traffic monitoring was complete it would then be possible to reconfigure the reference network to
better capture long-term trends.

Prior studies found that short-duration counts of one week between April and October were the point of diminishing
return for AADT estimation error (Hankey et al., 2014; Nordback et al., 2013a, 2013b; Nosal et al., 2014). Following these
studies, we collected one week of counts during April to October (year-2015) to minimize AADT estimation error. Street
functional class (Hankey et al., 2012) and bicycle facilities (Krizek et al., 2009; Dill and Carr, 2003; Buehler and Pucher,
2012) are associated with bicycle and pedestrian traffic. We used a transportation network characteristic called centrality
which aims to capture the effects of presence of a facility, road type, and the spatial locations of origins and destinations
(McDaniel et al., 2014) to aid in site selection. Briefly, centrality is computed by simulating the least-cost trip across the net-
work for every origin-destination pair including impedance factors for presence of a bike facility, street functional class, and
slope. Centrality has been shown to be correlated with bicycle traffic volume (McDaniel et al., 2014).

We selected short-duration count sites using a combination of street functional class and centrality to capture variability
for bicycle and pedestrian traffic volumes. Specifically, our site selection approach stratified selection by street functional
class (major road, local road, off-street trail) while attempting to incorporate sites with high and low trip potential based
on centrality (see Appendix A, Tables A.2 and A.3). Since there are only a few major roads in Blacksburg, we were able to
sample all major roads (average interval: 0.8 miles). We chose 29 count sites on major roads (10 with bicycle facilities;
19 without facilities). Next, we selected 20 sites on two types of off-street trails: (1) connected trails (highly connected trails
co-located along roads or ‘‘rails-to-trails” corridors; average segment length: 0.88 miles) and (2) fragmented neighborhood
trails (subdivision trails; average segment length: 0.63 miles). We randomly selected 10 sites from the small number (n = 16)
of connected trail segments to ensure good spatial coverage. We then randomly selected 10 sites of the fragmented
neighborhood trails (n = 26 segments). These trails were clustered into �0.5-mile length groups to avoid choosing many
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small segments within the same subdivision. Since there was a small number of major roads and off-street trails to choose
from we saturated sampling in those strata after selecting a total of 49 sites.

After saturating sampling for major roads and off-street trails, we used the remaining sites (n = 48) to choose sites on local
roads. We first selected sites on all local roads with a future planned bicycle facility (based on the Blacksburg Bicycle Master
Plan; n = 34) to (1) obtain baseline data for future infrastructure installation and (2) sample where people are likely to cycle
in the absence of facilities (the master plan largely follows frequently cycled corridors). This procedure resulted in oversam-
pling of sites with high centrality (i.e., high bicycle trip potential). To balance our sample we randomly selected 14 local road
sites in the lowest quartile of centrality. Table 1 shows a summary of the count sites by road type and level of centrality as
compared to Blacksburg as a whole; Fig. 2 shows the spatial location of the count sites with street functional class, bicycle
facilities, and centrality.
2.3. Counter validation and quality control

To adjust for systematic under- or over-counts, we conducted field-based manual counts at 8 count sites for each type of
automated counter (MetroCount: 181 h; Eco-counter: 274 h; RadioBeam: 29 h) and developed correction equations to adjust
all raw hourly counts from these counters (see Appendix A, Fig. A.2). We tested both polynomial and linear correction equa-
tions for each counter.

We compared three bicycle classification schemes provided in the MetroCount software (ARX Cycle, BOCO, and Bicycle
15) to assess the impact of choice of classification scheme on the correction equation for the pneumatic tube counters.
The ARX Cycle scheme uses the Australian vehicle classification with an added bicycle class. The BOCO (Boulder County,
CO) scheme revises the rules for truck classes based on ARX Cycle scheme and creates an extra bicycle class. The Bicycle
15 scheme adds an additional class for bicycles using the FHWA vehicle classification scheme.

Based on limited research on quality assurance and quality control for bicycle and pedestrian counts, we used a two-step
process to check for outliers: (1) direct cleaning of the data based on an event log that captured special events like counter
malfunction, battery loss, vandalism, and football games and (2) a statistical check based on the variability of the overall
count dataset. Specifically, we calculated the mean and standard deviation of the bicycle or pedestrian hourly counts for
weekends and weekdays for each month. We then flagged outliers by using the following criteria: mean traffic ± 5 � stan-
dard deviation. Our goal was to flag the hourly counts that were clear outliers while maintaining as much valid data as pos-
sible in the database.
2.4. Estimation of pedestrian and cyclist AADT

We used a four-step process to estimate AADT at each count site: (1) imputing missing days at the reference sites by
developing negative binomial regression models based on weather and temporal parameters, (2) combining observed and
imputed counts to calculate AADT for the continuous reference sites, (3) developing average day-of-year scaling factors
among the reference sites, and (4) applying the day-of-year scaling factors to estimate AADT for all short-duration sites.

We used the observed counts from the continuous reference sites to develop negative binomial regression models. Pre-
vious studies have shown that negative binomial regression models are well suited for count data with overdispersion
(Wang et al., 2014; Lindsey et al., 2013; Cao et al., 2006). We developed 8 site-specific models to estimate bicycle and pedes-
trian traffic on each day for each continuous reference site; we then used the models to provide daily volume estimates for
the missing days. We used STATA 14 (StataCorp LP, College Station, Texas) and its extension, SPost 9 (Long, 2006) to build the
Table 1
Summary of count sites by location type as compared to Blacksburg as a whole.

Count locations sampled in this study All street and trail segments in
Blacksburg

Location type n Centralitya: Mean (SDb) n Centralitya: Mean (SDb)

Major roads
With facility 10 54,700 (45,700) 45 80,000 (110,500)
Without facility 19 44,500 (55,100) 121 36,400 (48,400)

Off-street trails
Connected 11 457,900 (395,100) 15 244,100 (324,000)
Fragmented 10 47,000 (72,900) 26 31,300 (56,500)

Local roads
Future planned bike facility 37 123,800 (131,900) 976 32,700 (72,900)
Low centrality 14 588 (497) 636 (515)

a Centrality: magnitude of bicycle trip potential along a segment based on the spatial orientation of the network, origins, and
destinations.

b SD: Standard Deviation



Fig. 2. Location of traffic count sites shown with each variable used in site selection: major roads (left); bicycle facilities (middle); centrality (right). Short-
duration sites are the black dots; reference sites are the blue stars. Sites selected with major road and bike facility strata are shown in the left and middle
panel; all sites are shown in the right panel.
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models. Table 2 shows the variables used during model-building with the expected sign of the coefficients: tmax (daily max
temperature), tmaxdev (the daily variation compared to the 30 years average [1980–2010]), precipitation (in millimeters),
and windspeed (in mph). All data were retrieved from the National Climate Data Center of the National Oceanic and Atmo-
spheric Administration and the National Weather Service Forecast Office. We used dummy variables (i.e., weekend and uni-
versity in session) to account for day of week patterns and the academic calendar of the university (see Appendix B, Table B.1
for further details on weather and temporal variables used in the negative binomial modeling).

After imputing missing days using the negative binomial regression models we reconstructed a full year of data at the ref-
erence sites and developed day-of-year scaling factors for each reference site. Hankey et al. (2014) andNosal et al. (2014) intro-
ducedaday-of-year scaling factor approach toproduceAADTestimateswith smaller error than theday-of-week andmonth-of-
year method. We only used days with valid counts to estimate day-of-year scaling factors; the imputed data was used only to
calculate AADT in the denominator of Eq. (1). We followed this approach when developing scaling factors:
Scaling factor ¼ Average daily traffic=AADT ð1Þ
We used the average day-of-year scaling factors (among all four reference sites) to estimate AADT for all short-duration
sites. We matched daily counts at each short-duration site with the average bicycle and pedestrian day-of-year scaling factor
of the 4 reference sites to estimate the site-specific AADT for each day of the short-duration count period (�7 days per site).
Then, we averaged the daily AADT estimates to calculate a final AADT estimate for each short-duration site.
AADT Estimate ¼ 1=n �
Xn

i¼1

AdjCi=SFi ð2Þ
where AdjCi is the adjusted count (using the correction equations from the validation counts) on day i, n equals the
number of days of short-duration counts, and SFi denotes scaling factor retrieved from the reference site data. To compare
the estimated AADT of the short-duration sites during times when the University was in session and not in session, we
resampled 16 sites to compare estimates of AADT when collecting �1 week of counts during these two time periods.
Table 2
Variables used in negative binomial regression models of bicycle and pedestrian traffic at the reference sites.

Variables Definition Mean Expected signs

tmaxdev The daily variation compared to the 30-year (1980–2010) average temperature 0.91 +/�
tmax Recorded high temperature (Celsius) 18.2 +
precipitation Precipitation (mm) 3.4 –
windspeed Average wind speed (mph) 4.3 –
weekend Saturday or Sunday (equals 1, otherwise 0) 0.29 +/�
university in session University in session (equals 1, otherwise 0) 0.44 +
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2.5. Mapping and summarizing results

We mapped and summarized our AADT estimates to explore patterns of bicycle and pedestrian traffic in Blacksburg. We
focused on stratifying our results by street functional class, presence of facilities (e.g., sidewalks or bicycle facilities), and
proximity to campus. By using a systematic procedure to select count sites and remove temporal effects of cyclist and pedes-
trian traffic (via estimation of AADT) we were able to explore spatial trends in traffic patterns. We discuss how trends in
these patterns could be tracked over time to evaluate planning decisions.
3. Results and discussion

We collected 45,456 h of bicycle and pedestrian traffic counts at 101 locations (�5.5% of street or trail segments) in
Blacksburg, VA. Our overarching goal was to synthesize findings from the literature in a single framework to develop a
method for estimating a performance measure (i.e., AADT) that can be tracked over time. Here, we present findings from
our approach and discuss implications for designing and implementing traffic monitoring campaigns in small communities.
3.1. Data correction and cleaning

Our comparison of classification schemes showed that the ARX Cycle, BOCO, and Bicycle 15 schemes had similar R2

(�0.89) for linear correction equations; however, the BOCO scheme had a slightly lower linear slope (1.26) than ARX Cycle
(1.29) and Bicycle 15 (1.31), potentially indicating more accurate classification. For this reason, we chose the BOCO scheme
to correct and process our bicycle counts, which was consistent with findings from other similar studies (Brosnan et al.,
2015; Nordback et al., 2015a; Hyde-Wright et al., 2014). All automated counters were highly correlated with the manual
Fig. 3. Comparison of hourly automated counts and manual validation counts with corresponding correction equations for each type of counter.
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validated counts (MetroCount R2 [absolute error]: 0.88 [38%]; Eco-counter: 0.97 [24%]; RadioBeam bicycle: 0.92 [19%],
RadioBeam pedestrian: 0.92 [22%]; see Appendix A, Table A.4–A.6 for a detailed comparison of schemes).

MetroCount and RadioBeam counters had a linear fit, while the Eco-counter demonstrated the need for a polynomial fit.
Fig. 3 shows plots of automated vs. manual validation counts and the corresponding correction equations for each type of
automated counter.

The quality assurance and quality control process resulted in censoring (bicycle: 3%, pedestrian: 8%) a small number of
count days at the reference sites. Since there was not enough data to build a statistical check at each short-duration site, data
was only censored if an incomplete day of data was recorded or an abnormal event was logged (e.g., vandalism, battery loss).
Overall, the continuous reference sites reported valid counts for the majority of the count days when deployed in the field
(bicycles: 96%; pedestrians: 87%) and for the total calendar year (bicycles: 75%; pedestrians: 87%; some reference sites were
deployed in March). For the short-duration sites, 98% (bicycles) and 94% (pedestrians) of count sites had at least 7 days of
monitoring data; no sites experienced 5 days or less of counts (see Appendix A, Table A.7 & Table A.8 for a detailed descrip-
tion of valid monitoring days). Table 3 summarizes the descriptive statistics for all adjusted counts (using the correction
equations) at the reference and short-duration count sites.
3.2. Negative binomial regression models

Results of the site-specific negative binomial regression models are shown in Table 4. The dispersion factor a in the
Likelihood Ratio test for each model suggests significant evidence (p < 0.05) of overdispersion and appropriate use of the
Table 3
Descriptive statistics of average daily bicycle and pedestrian traffic for the reference and short-duration count sites.

Reference sites

Mode Site name Number of days Mean (Median) daily traffic volume IQRa

Bicycle Draper 257 24 (24) 13–31
College 247 62 (62) 43–79
Giles 246 59 (52) 36–71
Huckleberry 350 177 (174) 87–260

Pedestrian Draper 263 103 (96) 76–123
College 225 4,424 (4,120) 2,593–5,747
Giles 102 168 (156) 139–184
Huckleberry 336 514 (502) 338–659

Short-duration sites

Mode Site type Number of sites Mean (Median) daily traffic volume IQR

Bicycle Major Road 29 37 (33) 21–52
Local Road 48 38 (22) 8–40
Off-street Trail 20 79 (42) 10–112

Pedestrian Major Road 24 198 (156) 106–243
Local Road 24 593 (161) 106–529
Off-street Trail 20 92 (50) 17–154

a IQR: Interquartile range.

Table 4
Results of the site-specific negative binomial regression models.

Model Bicycle model Pedestrian model

Site Draper College Giles Huckleberry Draper College Giles Huckleberry

Constant 1.68 2.46 2.92 4.03 4.18 7.41 6.05 5.47
tmaxdev �0.058*** �0.056*** �0.032*** �0.021*** �0.017*** �0.005 0.017* �0.006
tmax 0.067*** 0.068*** 0.042*** 0.059*** 0.021*** 0.018*** �0.036*** 0.030***

precipitation �0.009*** �0.003 �0.006*** �0.008*** �0.003* �0.002 �0.002 �0.004*

windspeed �0.006 �0.020** �0.043*** �0.028*** �0.003 0.008 �0.019* �0.018*

weekend �0.418*** �0.115* �0.114* 0.113** �0.135*** 0.624*** 0.641 0.406***

unisession 0.221*** 0.725*** 0.919*** 0.184*** 0.211*** 0.827*** 0.246*** 0.376***

Observations 257 247 246 350 263 225 102 336
Pseudo R2 0.066 0.107 0.113 0.082 0.026 0.031 0.055 0.022

Note: dispersion factor a of all sites fit in LR test.
* Denotes p-value < 0.10.
** Denotes p-value < 0.05.
*** Denotes p-value < 0.01.



200 T. Lu et al. / Transportation Research Part D 53 (2017) 193–204
negative binomial regression models. Higher values of McFadden’s Pseudo-R2 indicates a better overall fit among models
(Cao et al., 2006); McFadden (1979) suggested that Pseudo-R2 values between 0.2 and 0.4 represent an excellent fit. Our
pseudo-R2 values are similar to other studies of bicycle and pedestrian traffic (Wang et al., 2014). The Chi-square tests
(p < 0.05) also indicate reasonable goodness-of-fit. To generate validation R2 values we used the negative binomial regression
models to estimate daily traffic counts for all days with valid data. Then, we compared the model-generated estimates with
observed counts (see Appendix A, Fig. A.3–A.8). Overall, the bicycle traffic models performed more reliably (validation
R2 = �0.70) than the pedestrian traffic models (validation R2 = �0.30) likely owing to the fact that cyclists seem to be more
sensitive to weather than pedestrians in our dataset. This finding is consistent with previous research (Hankey et al., 2012;
Schasberger et al., 2012).

Both bicycle and pedestrian traffic counts at nearly all of the reference sites were correlated with the independent vari-
ables in the expected direction. However, there were exceptions for some sites; for example, pedestrian traffic at College
Avenue was not significantly associated with precipitation or wind speed, which may be due to the consistent demand asso-
ciated with retail corridors (e.g., dining or meeting friends). Walking activities at Giles Road were not correlated with pre-
cipitation or day of week (i.e., weekend vs. weekday); this finding may be due to the comparatively small number of
observations for this location (102 days) due to vandalism. Considering consistency across count sites, we incorporated
all variables in the final models for each location. We used the models to impute missing days in the reference site database.
In total, we imputed 30% of all days among the reference network.
3.3. AADT estimation

We developed scaling factors based on data from the 4 reference sites to estimate AADT at each short-duration count site.
We grouped all bicycle and pedestrian reference sites to average day-of-year scaling factors for each mode rather than devel-
oping factor groups (AADT estimates are shown in Appendix B, Table B.2–B.4). Fig. 4 shows the general temporal pattern of
the bicycle and pedestrian scaling factors which reveals the seasonal and university-related impacts on traffic patterns
throughout the year. In general, traffic volumes were lower in the winter (days with low temperatures), and in the summer
(days when students leave Blacksburg). Table 5 shows a summary of AADT compared to average daily traffic (ADT) for all
count sites. As a whole, the difference between the actual counts and AADT was larger for pedestrians than for bicycles, likely
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Fig. 4. Average bicycle and pedestrian day-of-year scaling factors used to estimate AADT at short-duration count sites (year-2015).

Table 5
Summary of AADT estimates compared to average daily traffic (ADT) for all count sites.

Traffic Road and trail type Mean ADT Mean AADT Percent difference Mean absolute percent difference

Bicycle Major road 37 32 0% 18%
Local road 38 40 �16% 31%
Off-street trail 79 73 �10% 23%
All locations 46 44 0% 25%

Pedestrian Major road 198 236 19% 23%
Local road 593 693 7% 15%
Off-street Trail 92 111 4% 23%
all locations 306 371 10% 20%



Fig. 5. Bicycle and pedestrian AADT at all monitoring sites.
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owing to the fact that pedestrian volumes were generally higher and more variable by season than bicycles (likely influenced
by the university population).

We resampled 16 short-duration count sites to compare the estimated AADT from counts collected when the university
was in session vs. when the university was not in session. We found that the average percent error between university
not in session and university in session of bicycle (pedestrian) AADT is 21% (11%), and median percent error is 6% (9%)
(see Appendix B, Table B.5).
3.4. Mapping and summarizing AADT at the count locations

Estimated bicycle and pedestrian AADT for all monitoring sites are shown in Fig. 5. Previous studies found that mixed use
of land containing convenience stores, offices, or restaurants are associated with bicycle activities (Pucher and Buehler, 2006;
Moudon et al., 2005; Cui et al., 2004; Faghih-Imani et al., 2014). Our estimates of bicycle and pedestrian traffic are consistent
with those studies. The downtown commercial corridor with retail and mixed uses have high cycling volumes (�70/day).
Off-street trails adjacent to the University also had high bicycle volumes (�150/day). The largest pedestrian volumes
(�12,000/day) are within the university area and along the downtown commercial corridor. In some residential areas, near
off-street trails, pedestrian volumes are higher than other outer lying areas.

Fig. 6 displays the distribution of bicycle and pedestrian AADT by street functional class, bicycle facility, and distance from
campus. In general, bicycle facilities are associated with increased levels of bicycle commuting (Krizek et al., 2009; Dill and
Carr, 2003; Buehler and Pucher, 2012) and cyclists show a preference to ride on roads with facilities compared to roads
without (Buehler and Pucher, 2012; Hunt and Abraham, 2007; Fishman et al., 2014; Sanders and Cooper, 2013; Kang and
Fricker, 2013). We find that the presence of a bicycle lane is associated with higher daily cycling volumes (mean: 72/day
vs. 30/day; p < 0.01). Similarly, bicycle AADT is significantly higher (p < 0.01) on long distance, connected trails (mean:
112/day) as compared to roads both with (72/day) and without (30/day) a bike lane as well as fragmented neighborhood
trails (29/day).

Pedestrian AADT is significantly higher (p < 0.01) on local roads (mean: 693/day) than on major roads (mean: 236/day),
connected trails (mean: 162/day) and fragmented trails (mean: 55/day). This finding is likely owing to the fact that most
roads on the university campus are classified as local roads. To test the effect of count sites located on campus we stratified
our sample by distance from campus in three categories (on campus, within 500 m of campus, more than 500 m from cam-
pus). We observe that when the distance from campus increases, bicycle and pedestrian traffic generally declines for major
and local roads, but that the effect is largest for local roads.



Fig. 6. Bicycle and pedestrian AADT by street functional class, bike facility, and distance from campus. The upper panels show bicycle and pedestrian AADT
by street functional class and bike facility; the lower panels show AADT by distance from campus. Note: 95th percentile values were clipped from the
pedestrian plots to preserve overall trends in the data.
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3.5. Implications for future research and non-motorized traffic monitoring

We developed a bicycle and pedestrian traffic monitoring campaign to estimate a commonly used performance measure
(AADT) in a small, rural college town. Our work synthesizes many ongoing efforts to effectively count and track non-
motorized traffic patterns. For example, we used guidance on AADT estimation (e.g., length and season of short-duration
count; Hankey et al., 2014; Nordback et al., 2013a, 2013b; Nosal et al., 2014), count site selection (i.e., use of a centrality
metric; McDaniel et al., 2014), and data processing (e.g., use of BOCO classification and process for developing correction
equations; Brosnan et al., 2015; Nordback et al., 2015a; Hyde-Wright et al., 2014) to design our count campaign. Our work
offers a proof-of-concept that comprehensive monitoring programs for bicycles and pedestrians are feasible and can be
designed in an efficient way to maximize limited resources. A useful extension of our work would be to test our approach
in a larger jurisdiction with a more complex transportation network.

Several limitations of our work could be addressed in future studies. First, due to resource constraints, we were only able
to deploy 4 reference sites to monitor temporal trends in Blacksburg. Questions remain on how best to locate reference sites
and how many reference sites are sufficient to characterize a region or transportation network. The traffic volumes collected
in this study could be evaluated to reconfigure the reference network to better capture long-term trends in the future. Sec-
ond, pedestrians were only monitored where walking facilities (i.e., sidewalks) were available, which limited our ability to
sample the entire transportation network for pedestrians. Our negative binomial regression models had modest performance
for pedestrians (validation R2 = �0.30), leaving room for model improvement or incorporation of spatial factors that were not
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captured in our weather-based models. Third, with limited research for quality assurance and quality control for bicycle and
pedestrian count data, we chose basic criteria to censor outliers from our dataset; however, more work is needed to assess
best practices for censoring unreliable data. Fourth, we chose 1 week of data collection for our short-duration counts follow-
ing previous research (Hankey et al., 2014; Nordback et al., 2013a, 2013b; Nosal et al., 2014). Bias in the AADT estimates may
occur since factor groups were not developed for scaling since we were only able to deploy a small number of reference sites.
Fifth, our paper described how the estimates of AADT can be calculated based on a synthesis of methods from previous
research, however, we were not able to compare to actual AADT values to validate our approach. Incorporating spatial vari-
ables (e.g., land uses) into assessment and modeling may be useful to study traffic patterns of both pedestrian and bicycle
volumes; this addition may be especially important for pedestrians since pedestrian volumes seemed to be less correlated
with weather factors near clusters of destinations.

Our work has practical implications for designing comprehensive count programs to develop performance measures for
bicycles and pedestrians. Our approach could be replicated by local planners and engineers interested in establishing a traffic
monitoring program. Since our work was completed in a small community, we were able to systematically select a repre-
sentative sample of street and trail segments among the entire network (�5.5% of all segments). We expect that our
approach could be adopted in larger, more complex urban areas to generate analogous performance measures to motor vehi-
cle traffic for use in decision making. Routine collection of bicycle and pedestrian counts could aid planners in evaluating
infrastructure investments, safety analyses, and measuring exposure to risk.
4. Conclusions

This paper describes the design and implementation of a comprehensive bicycle and pedestrian traffic count campaign in
Blacksburg, VA. Our approach focused on designing traffic monitoring programs for small communities with the goal of
assessing the entire network. Our approach included four major steps: (1) selecting and validating automated counters,
(2) site selection and data collection, (3) estimation of AADT, and (4) mapping and summarizing results. We found strong
correlation between validation counts and automated counts and correction equations varied by counter type; this finding
highlights the importance of validating counter performance prior to use in the field. We were able to choose count sites for
the purpose of tracking performance measures based on limited available information (i.e., street functional class, facility,
and centrality). We found that it was possible to combine methods from previous studies to estimate AADT. Namely, we
(1) imputed missing counts at reference sites using negative binomial regression, (2) developed day-of-year scaling factors,
and (3) estimated AADT at short-duration count sites using 1 week of traffic counts. Our work serves as a proof-of-concept
for designing and implementing a comprehensive bicycle and pedestrian traffic monitoring program in a small, rural com-
munity. We found that similar approaches may be used to count bicycles and pedestrians, however, the temporal and spatial
patterns of traffic differed between modes. This finding underscores the importance of monitoring and modeling modes sep-
arately. Our approach could be replicated in other jurisdictions (large or small communities) to confirm feasibility in differ-
ent traffic environments.
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